Given:
MC (Mission Capable \%) = PMC (Partial Mission Capable \%) + FMC (Full Mission Capable \%)
$R(t)=$ Aircraft Reliability $=$ MC / $100=($ PMC / 100 $)+($ FMC / 100 $)$
$R(t)=e^{-\lambda t}$; whereas $e=$ natural $\log =2.718281828, \lambda=$ Failure Rate and $t=$ time (or flying hours)

$$
\operatorname{Ln}(R(t))=\operatorname{Ln}\left(e^{-\lambda t}\right)=-\lambda t \text { or Failure Rate } \lambda=\operatorname{Ln}(R(t)) /-t
$$

Use the above given statements and empirical formulas to answer the following questions:

1. An aircraft fleet has flown 1 year with an average FMC of 70% and an average PMC of 8%. What is the aircraft reliability $R(t)$ of that year ?
a. 0.70
b. 0.78
c. 0.80
d. 0.62
2. An aircraft fleet has flown 1 year with an average PMC of 5% and the reliability of 0.75 . What is the FMC (\%) of this aircraft fleet ?
a. 60%
b. 65%
c. 70%
d. 75%
3. An aircraft fleet has flown 1 year with an average FMC of 72% and the reliability of 0.72 . What is the PMC (\%) of this aircraft fleet ?
a. 0%
b. 5 \%
c. 8%
d. 10%
4. Given: Failure Rate $\boldsymbol{\lambda}=\operatorname{Ln}(R(t)) /-t$.......... and $R(t)=e^{-\lambda t}$

An aircraft fleet has flown 2,800 flying hours in year 2020 with an average MC of 66%. This aircraft fleet is planned to fly 3,000 flying hours in year 2021. What is the aircraft MC forecast in the year 2021?
a. $\boldsymbol{\lambda}_{1}=\operatorname{Ln}(0.66) /(-3,000) ; M C_{\text {year2021 }}=\mathrm{e}^{-\left(\lambda_{1}{ }^{*} 2,800\right)}$
b. $\boldsymbol{\lambda}_{1}=\operatorname{Ln}(0.34) /(-3,000) ; C_{\text {year2021 }}=\mathrm{e}^{-\left(\lambda_{1} * 2,800\right)}$
c. $\lambda_{1}=\operatorname{Ln}(0.66) /(-2,800) ; M C_{\text {year2021 }}=e^{-\left(\lambda_{1} * 3,000\right)}$
d. $\boldsymbol{\lambda}_{1}=\operatorname{Ln}(0.34) /(-2,800) ; M C_{\text {year2021 }}=\mathrm{e}^{-\left(\lambda_{1} * 3,000\right)}$
5. Given: Failure Rate $\boldsymbol{\lambda}=\operatorname{Ln}(R(t)) /-t$.......... and $R(t)=e^{-\lambda t}$

An aircraft fleet has flown 5,500 flying hours in year 2020 with an average MC of 72%. This aircraft fleet is planned to fly 6,000 flying hours in year 2021. What is the aircraft MC forecast in the year 2021?
a. $\lambda_{1}=\operatorname{Ln}(0.72) /(-5,500) ; M C_{\text {year2021 }}=\mathrm{e}^{-\left(\lambda_{1}{ }^{*}-6,000\right)}$
b. $\boldsymbol{\lambda}_{1}=\operatorname{Ln}(0.72) /(6,000) ; M C_{\text {year2021 }}=\mathrm{e}^{-\left(\lambda_{1}^{*}-5,500\right)}$
c. $\boldsymbol{\lambda}_{1}=\operatorname{Ln}(0.72) /(-6,000) ; M C_{\text {year2021 }}=\mathrm{e}^{-(\lambda * 5,500)}$
d. $\boldsymbol{\lambda}_{1}=\operatorname{Ln}(0.72) /(-5,500) ; M C_{\text {year2021 }}=\mathrm{e}^{-\left(\lambda_{1} * 6,000\right)}$

