

Mission Capable (MC %)

FORECAST

USING RELIABILITY CALCULATOR

Test & Tutorial

As of 11st Feb. 2021

เป็นองค์กรที่มุ่งเน้นการพัฒนาระบบการซ่อมสร้างอากาศยาน ให้มีความปลอดภัยและเป็นมาตรฐานสากล

กรมช่างอากาศ FMC FORECAST USING RELIABILIT Pilest per Of Aeronautical Engineering

MULINIARY FMC FORECAST USING RELIABILITY

Given

MC (Mission Capable %) = PMC (Partial Mission Capable %) + FMC (Full Mission Capable %)

H(t) = Aircraft Heliability = MC / 100 = (PMC / 100) + (PMC / 100)

 $\mathbf{P}(t) = e^{-\mathbf{A}\cdot t}$; whereas e = natural \log = 2.718281828, \mathbf{A} = Failure Rate and t = time (or fluing bound)

$Ln(H(t)) + Ln(e^{-\lambda t}) = \lambda t$ or Failure Hate $\lambda + Ln(H(t)) \times t$

Use the above given statements and empirical formulas to answer the following questions:

1, An aircraft fleet has flown 1 year with an average FWC of 70 % and an average PWC of 8 %. What is the aircraft reliability H(t) of that year 7

a. 0.70

b. 0.78

c. 0.80

2. An aircraft fleet has flown 1 year with an average PMC of 5 % and the reliability of 0.75. What is the FMC (%) of this aircraft fleet ?

a. 60 96

b. 65 %

c. 70 %

d. 75 9

An aircraft fleet has flown 1 year with an average FMC of 72 % and the reliability of 0.72.
 What is the PMC (%) of this aircraft fleet 7

a. 0.96

b. 5 %

c. 8 %

d. 10 %

4. <u>Given:</u> Failure Rate λ = Ln(H(t)) / t and H(t) = e^{-λ t}

An aircraft fleet has flown 2,800 flying hours in year 2020 with an average MC of 66 %. This aircraft fleet is planned to fly 3,000 flying hours in year 2021. What is the aircraft MC forecast in the year 2021 7

a. $\lambda_1 = \text{Ln}(0.66) / (-3,000); \text{MC}_{\text{year}2021} = e^{-\Omega_1 + 2,000}$

b. $\lambda_1 = \text{Ln}(0.34) / (-3,000); MC_{max(0)} = e^{-(\lambda_1 + 2,000)}$

c. $\lambda_1 = \text{Ln}(0.66) / (-2,800); \text{NC}_{98062021} = e^{-i \lambda_1 + 1,800}$

d. $\lambda_1 = \text{Ln}(0.34) / \{-2,800\}; \text{MC}_{max(0)} = e^{-(\lambda_1 + 3,000)}$

5. Given: Failure Rate $\lambda = Ln(H(t)) / t$ and $H(t) = e^{-\lambda t}$

An aircraft fleet has flown 5,500 flying hours in year 2020 with an average MC of 72 %. This aircraft fleet is planned to fly 6,000 flying hours in year 2021. What is the aircraft MC forecast in the year 2021 7

a. $\lambda_1 = \text{Ln}(0.72) / (-5,500); MC_{\text{var}(0.02)} = e^{-\lambda_1 - 4,000}$

b. $\lambda_1 = \text{Ln}(0.72) / (6,000); MC_{poss2001} = e^{-\lambda_1^2 - 6,5000}$

c. $\lambda_1 = \text{Ln}(0.72) / (-6,000); \text{MC}_{98062021} = e^{-j \lambda_1 + 5,000}$

d. $\lambda_1 = \text{Ln}(0.72) / \{-5,500\}; MC_{\text{magrout}} = e^{-(\lambda_1 + 4,000)}$

Given Data

```
MC (Mission Capable %) = PMC (Partial Mission Capable %) + FMC (Full Mission Capable %)  R(t) = \text{Aircraft Reliability} = \text{MC / 100} = (\text{PMC / 100}) + (\text{FMC / 100}) \\ R(t) = e^{-\lambda t}; \text{ whereas } e = \text{natural log} = 2.718281828, \\ \lambda = \text{Failure Rate and } t = \text{time}  (or flying hours)  Ln(R(t)) = Ln(e^{-\lambda t}) = -\lambda t \text{ or Failure Rate } \\ \lambda = Ln(R(t)) / -t
```


ทฤษฎีและหลักการที่เกี่ยวข้อง

กรมช้างอากาค Directorate Of Aeronautical Engineering

- ความพร้อมปฏิบัติการ ของอากาศยาน ทอ. = MC% = FMC% + PMC% (FY 2020)
- 2. ความเชื่อถือได้ (Reliability) ในการปฏิบัติการของอากาศยาน R(t) = MC%/100 = (FMC%+PMC%)/100
- 3. Reliability; R(t) = EXP(- λ *t) หรือ R(t) = e ^ (λ * t)
- 4. λ = Failure Rate , t = Flying Hours (YR 2020) , e = 2.7182818281828...
- 5. $Ln(R(t)) = Ln(EXP(-\lambda *t))$
- 6. $Ln(R(t)) = -\lambda *t$
- 7. $\lambda = Ln(R(t))/(-t)$
- 8. MC% FORECAST (YR 2021) = R(t) *100 = e ^ (λ * t) *100 , t = Flying Hours (FY 2021)

Use the above given statements and empirical formulas to answer the following questions:

1. An aircraft fleet has flown 1 year with an average FMC of 70 % and an average PMC of 8 % .

What is the aircraft reliability R(t) of that year?

a. 0.70

b. 0.78

c. 0.80

d. 0.62

🚧 ทฤษฎีและหลักการที่เกี่ยวข้อง

กรมช่างอากาค Directorate Of Aeronautical Engineering

- 1. ความพร้อมปฏิบัติการ ของอากาศยาน ทอ. = MC% = FMC% + PMC% (FY 2020)
- 2. ความเชื่อถือได้ (Reliability) ในการปฏิบัติการของอากาศยาน R(t) = MC%/100 = (FMC%+PMC%)/100
- 3. Reliability; R(t) = EXP(- λ *t) หรือ R(t) = e ^ (λ * t)
- 4. λ = Failure Rate, t = Flying Hours (YR 2020), e = 2.7182818281828...
- 5. $Ln(R(t)) = Ln(EXP(-\lambda *t))$
- 6. $Ln(R(t)) = -\lambda *t$
- 7. $\lambda = \text{Ln}(R(t))/(-t)$
- 8. MC% FORECAST (YR 2021) = R(t) *100 = e ^ (λ * t) *100 , t = Flying Hours (FY 2021)

ความเชื่อถือได้ (Reliability) ในการปฏิบัติการของอากาศยาน R(t) = MC%/100 = (FMC%+PMC%)/100

<u>จากโจทย์</u> FMC = 70%

PMC = 8%

จาก R(t) = MC%/100 = (FMC%+PMC%)/100

<mark>ดังนั้น</mark> ความเชื่อถือได้ (Reliability) ในการปฏิบัติการของอากาศยาน R(t) = MC%/100 = (70+8)/100 = <u>0.78</u>

2. An aircraft fleet has flown 1 year with an average PMC of 5 % and the reliability of 0.75. What is the FMC (%) of this aircraft fleet ?

a. 60 %

b. 65 %

c. 70 %

d. 75 %

🥟 ทฤษฎีและหลักการที่เกี่ยวข้อง

กรมช่างอากาศ Directorate Of Aeronautical Engineering

- 1. ความพร้อมปฏิบัติการ ของอากาศยาน ทอ. = MC% = FMC% + PMC% (FY 2020)
- 2. ความเชื่อถือได้ (Reliability) ในการปฏิบัติการของอากาศยาน R(t) = MC%/100 = (FMC%+PMC%)/100
- 3. Reliability; R(t) = EXP(- λ *t) หรือ R(t) = e ^ (λ * t)
- 4. λ = Failure Rate, t = Flying Hours (YR 2020), e = 2.7182818281828...
- 5. $Ln(R(t)) = Ln(EXP(-\lambda *t))$
- 6. $Ln(R(t)) = -\lambda *t$
- 7. $\lambda = \text{Ln}(R(t))/(-t)$
- 8. MC% FORECAST (YR 2021) = R(t) *100 = e ^ (λ * t) *100 , t = Flying Hours (FY 2021)

ความเชื่อถือได้ (Reliability) ในการปฏิบัติการของอากาศยาน R(t) = MC%/100 = (FMC%+PMC%)/100

```
<u>จากโจทย์</u> PMC = 5%, R(t) = 0.75
จาก R(t) = MC%/100 = (FMC%+PMC%)/100
แทนค่า 0.75 = MC%/100 = (FMC% + 5)/100
ดังนั้น FMC% = (0.75 x 100) - (5) = 70
```

3. An aircraft fleet has flown 1 year with an average FMC of 72 % and the reliability of 0.72. What is the PMC (%) of this aircraft fleet ?

a. 0 %

b. 5 %

c. 8 %

d. 10 %

🥟 ทฤษฎีและหลักการที่เกี่ยวข้อง

กรมช่างอากาศ Directorate Of Aeronautical Engineering

- 1. ความพร้อมปฏิบัติการ ของอากาศยาน ทอ. = MC% = FMC% + PMC% (FY 2020)
- 2. ความเชื่อถือได้ (Reliability) ในการปฏิบัติการของอากาศยาน R(t) = MC%/100 = (FMC%+PMC%)/100
- 3. Reliability; R(t) = EXP(- λ *t) หรือ R(t) = e ^ (λ * t)
- 4. λ = Failure Rate, t = Flying Hours (YR 2020), e = 2.7182818281828...
- 5. $Ln(R(t)) = Ln(EXP(-\lambda *t))$
- 6. $Ln(R(t)) = -\lambda *t$
- 7. $\lambda = \text{Ln}(R(t))/(-t)$
- 8. MC% FORECAST (YR 2021) = R(t) *100 = e ^ (λ * t) *100 , t = Flying Hours (FY 2021)

ความเชื่อถือได้ (Reliability) ในการปฏิบัติการของอากาศยาน R(t) = MC%/100 = (FMC%+PMC%)/100

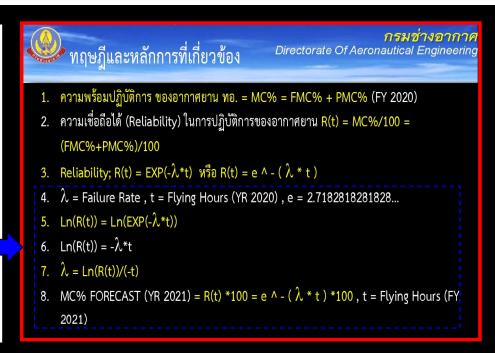
<u>จากโจทย์</u> FMC = 72%, R(t) = 0.72

จาก R(t) = MC%/100 = (FMC%+PMC%)/100

แทนค่า 0.72 = MC%/100 = (72 + PMC%)/100

ดังนั้น PMC% = (0.72×100) – (72) = 0

4. Given: Failure Rate $\lambda = \text{Ln}(R(t)) / -t$ and $R(t) = e^{-\lambda t}$


An aircraft fleet has flown 2,800 flying hours in year 2020 with an average MC of 66 %. This aircraft fleet is planned to fly 3,000 flying hours in year 2021. What is the aircraft MC forecast in the year 2021?

a.
$$\lambda_1 = \text{Ln}(0.66) / (-3,000); \text{MC}_{\text{vear}(2021)} = e^{-(\lambda_1 * 2,800)}$$

b.
$$\lambda_1 = \text{Ln}(0.34) / (-3,000); \text{MC}_{\text{year}2021} = e^{-(\lambda_1 * 2,800)}$$

c.
$$\lambda_1$$
 = Ln(0.66) / (- 2,800); MC_{year2021} = $e^{-(\lambda_1 * 3,000)}$

d.
$$\lambda_1$$
 = Ln(0.34) / (- 2,800); MC_{year2021} = $e^{-(\lambda_1 * 3,000)}$

 $\lambda = \text{Ln}(R(t))/(-t), \lambda = \text{Failure Rate}, t = \text{Flying Hours (YR 2020)}, e = 2.7182818281828...$ MC% FORECAST (YR 2021) = R(t) = e ^ - (\lambda * t \), t = Flying Hours (FY 2021)

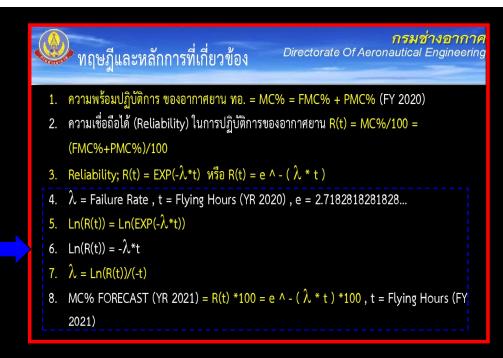
จากโจทย์ YEAR 2020 : Has flown 2,800 FH., MC = 66%

YEAR 2021: 3,000 FH. (as planned), MC% FORECAST = ?

ดังนั้น $\lambda_1 = \text{Ln}(R(t))/(-t) = \frac{\text{Ln}(0.66)/(-2,800)}{\text{Ln}(0.66)/(-2,800)}$, t = Flying Hours (FY 2020)

ดังนั้น MC% FORECAST (YR 2021) = <u>R(t) = e ^ - (λ₁ * 3,000</u>) , t = Flying Hours (FY 2021)

5. <u>Given</u>: Failure Rate $\lambda = \text{Ln}(R(t)) / -t$ and $R(t) = e^{-\lambda t}$


An aircraft fleet has flown 5,500 flying hours in year 2020 with an average MC of 72 %. This aircraft fleet is planned to fly 6,000 flying hours in year 2021. What is the aircraft MC forecast in the year 2021?

a.
$$\lambda_1 = \text{Ln}(0.72) / (-5,500); \text{MC}_{\text{year}2021} = e^{-(\lambda_1^* - 6,000)}$$

b.
$$\lambda_1 = \text{Ln}(0.72) / (6,000); \text{MC}_{\text{year}2021} = e^{-(\lambda_1 * -5,500)}$$

c.
$$\lambda_1 = \text{Ln}(0.72) / (-6,000); \text{MC}_{\text{year}2021} = e^{-(\lambda_1 * 5,500)}$$

d.
$$\lambda_1 = \text{Ln}(0.72) / (-5,500); \text{MC}_{\text{year}2021} = e^{-\frac{\lambda_1 + 6,000}{1}}$$

 $\lambda = \text{Ln}(R(t))/(-t), \lambda = \text{Failure Rate}, t = \text{Flying Hours (YR 2020)}, e = 2.7182818281828...$ MC% FORECAST (YR 2021) = R(t) = e ^ - ($\lambda * t$), t = Flying Hours (FY 2021)

จากโจทย์ YEAR 2020 : Has flown 5,500 FH., MC = 72%

YEAR 2021: 6,000 FH. (as planned), MC% FORECAST = ?

ดังนั้น $\lambda_1 = \text{Ln}(R(t))/(-t) = \frac{\text{Ln}(0.72)/(-5,500)}{\text{Ln}(0.72)/(-5,500)}$, t = Flying Hours (FY 2020)

ดังนั้น MC% FORECAST (YR 2021) = R(t) = e ^ - (λ_1 * 6,000) , t = Flying Hours (FY 2021)

Mission Capable (MC %)

FORECAST

USING RELIABILITY CALCULATOR

Test & Tutorial

As of 11st Feb. 2021

เป็นองค์กรที่มุ่งเน้นการพัฒนาระบบการซ่อมสร้างอากาศยาน ให้มีความปลอดภัยและเป็นมาตรฐานสากล